

Published on Web 04/06/2007

3 nm-Scale Molecular Switching between Fluorescent Coordination Capsule and Nonfluorescent Cage

Koji Harano,[†] Shuichi Hiraoka,^{†,‡} and Mitsuhiko Shionoya*,[†]

Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, and PRESTO, Japan Science and Technology Agency (JST), Honcho, Kawaguchi, Saitama 332-0012, Japan

Received August 17, 2006; E-mail: shionoya@chem.s.u-tokyo.ac.jp

The reversible arrangement of molecular building blocks in selfassembled architectures is a key to the growth strategy for structural and functional molecular switching systems.¹ In metal-assembled systems, a change in coordination number and geometry of metal centers can be triggered by external stimuli, and thereby dynamic structural switching of the entities would take place in association with a notable change in their chemical and physical properties.^{2,3} Herein we describe a novel molecular switching system using 3 nm-sized Hg2+-mediated coordination capsules that are formed from trismonodentate ligands $1 \mbox{ and } \mbox{Hg}^{2+}$ ions in a self-assembled manner. In this system, a capsule-shaped, fluorescent $Hg_6 I_8$ complex and a cage-shaped, nonfluorescent $Hg_6 1_4$ complex are quantitatively formed and structurally switchable in response to the $Hg^{2+}/1$ ratios in solution (Figure 1). The repeatable interconversion between the two distinct complexes is accompanied by the reversible changes in the coordination mode of Hg2+ ion between an octahedral and a linear coordination geometries.

Recently, we reported the isostructural formation of M_6I_8 complexes from ten kinds of divalent d^5-d^{10} metal ions (M = Mn^{2+} , Fe²⁺, Co²⁺, Ni²⁺, Pd²⁺, Pt²⁺, Cu²⁺, Zn²⁺, Cd²⁺, and Hg²⁺), and the tightly packed capsule-shaped structure of Hg₆I₈ complex was determined by ¹H NMR, ESI-TOF mass, and X-ray analyses.⁴ In this study, further ¹H NMR study revealed that the Hg₆I₈ capsule complex can be quantitatively converted into an alternative cage-shaped complex, Hg₆I₄.

Specifically, the signals of methyl protons (H_i) and two of the *p*-tolyl protons (H_h) of $Hg_6 \mathbf{1}_8$ showed upfield shift compared with those of ligand 1 ($\Delta \delta = -1.3$ ppm for H_i, and -0.8 and -0.4ppm for H_{h1} and H_{h2}, respectively) (Figure 2a,b), indicating the shielding effects from the neighboring aromatic ligands tightly packed in a capsule-shaped structure of Hg_61_8 in solution. Upon further addition of Hg^{2+} ions to the solution of Hg_61_8 in CD₃CN, a new set of signals appeared in its ¹H NMR spectrum with highly symmetrical patterns,⁵ and when the $Hg^{2+}/1$ ratio reached 3:2, the signals of Hg_61_8 complex completely disappeared (Figure 2c). The ESI-TOF mass spectrum of a mixed solution of Hg(OTf)₂ and 1 (3:2) showed signals at *m*/*z* 1095.9, 1407.4, and 1926.2 assignable to $[Hg_61_4 \cdot (OTf)_7]^{5+}$, $[Hg_61_4 \cdot (OTf)_8]^{4+}$, and $[Hg_61_4 \cdot (OTf)_9]^{3+}$, respectively, without any signals arising from Hg₆1₈ complex.⁶ These results demonstrate Hg_61_4 complex is quantitatively formed in solution when the $Hg^{2+}/1$ ratio is 3:2. UV titration experiments also supported the quantitative formation of Hg_61_8 and Hg_61_4 complexes in response to the $Hg^{2+}/1$ ratios.⁶

The ¹H NMR spectrum of Hg_61_4 showed eight doublets for aromatic protons of *p*-tolyl and *p*-phenylene groups, as observed with Hg_61_8 , suggesting that the disk-shaped ligand 1 should face the internal and external areas of the metal-assembled cagelike

Figure 1. Schematic representation of the quantitative and reversible structural interconversion between a fluorescent Hg_61_8 capsule complex and a nonfluorescent Hg_61_4 cage complex formed from trismonodentate ligands 1 and Hg^{2+} ions.

Figure 2. ¹H NMR spectra (500 MHz, CD₃CN, 293 K): (a) ligand 1 only ([1] = 4.2 mM), (b) Hg₆1₈ capsule ([Hg²⁺] = 3.1 mM, [1] = 4.2 mM, [Hg²⁺]/[1] = 3:4), (c) Hg₆1₄ cage ([Hg²⁺] = 6.3 mM, [1] = 4.2 mM, [Hg²⁺]/[1] = 3:2), (d) after addition of cryptand 2 (0.75 equiv) to the sample of trace c; signals with an asterisk (*) represent residual peaks of CD₃CN.

molecule. However, upfield chemical shifts observed for some of the protons of Hg_61_8 were no longer observed with Hg_61_4 . This result suggests a remarkable change in the Hg^{2+} complex from a densely closed to a partly closed structure. Diffusion-ordered NMR spectroscopy (DOSY)⁷ of this newly generated Hg_61_4 complex in CD₃CN showed a set of signals with a diffusion coefficient of 3.9

[†] The University of Tokyo. [‡] PRESTO, JST.

Figure 3. Fluorescence switching between Hg₆1₈ capsule and Hg₆1₄ cage; (a) emission of Hg₆1₈ capsule (left) and Hg₆1₄ cage (right) under UV irradiation ([1] = 1 mM), (b) fluorescence spectra of capsule (red) and cage (blue) complexes ([1] = 10 μ M, CH₃CN, 293 K, $\lambda_{ex} = 284$ nm), and (c) reversible switching cycles of fluorescence intensity ($\lambda_{em} = 360$ nm) by alternate addition of Hg²⁺ ions and cryptand **2**.

 $\times 10^{-10}$ m² s⁻¹, which is almost the same as that of Hg₆1₈ capsule (3.7 $\times 10^{-10}$ m² s⁻¹).⁶ These results indicate that the Hg₆1₄ complex is similar in size and shape to the Hg₆1₈ capsule in solution. In other words, Hg²⁺ ions in Hg₆1₄ occupy the six apexes of the octahedron with the Hg···Hg distance of approximately 18 Å as confirmed for Hg₆1₈,⁴ but only four of the eight faces are occupied by the ligand molecules with high symmetry. While some proton signals of Hg₆1₈ upfield-shifted in the ¹H NMR spectrum, those of Hg₆1₄ did not show any shift, suggesting that the structure of the Hg₆1₄ cape can be depicted as elimination of four ligand panels from the closely packed octahedron.

This structural switching is accompanied by a change in coordination geometry of Hg^{2+} from an octahedral six-coordinate geometry to a linear two-coordinate geometry. ¹⁹F NMR spectrum of Hg_61_4 complex showed only one signal as a sharp singlet at δ 85.3, whereas that of Hg_61_8 complex exhibited two signals at δ 85.2 and 86.1 owing to the separation of TfO^- anions into inside and outside the capsule. This result suggests that only two pyridine N donors coordinate to the Hg^{2+} centers of the Hg_61_4 cage, considering that Hg^{2+} ions prefer a two-coordinate geometry,⁸ and that the rate of exchange between the inner and the outer anions of the Hg_61_4 cage is faster than the NMR time scale owing to the presence of the large openings in the cage-shaped structure.

The formation of the Hg₆1₈ capsule and the Hg₆1₄ cage fully depends on the relative concentration between Hg²⁺ ions and ligand 1 in solution, and the structural interconversion between the capsule and the cage can be further repeated by reversibly changing the available concentration of Hg²⁺ ions using strong Hg²⁺-chelating reagents such as [2.2.2]-cryptand 2. Upon addition of 0.75 equiv of Hg(OTf)₂ (to 1) to the Hg₆1₈ solution, the capsule structure quickly and quantitatively switched to the Hg₆1₄ cage structure (Figure 2c). When 0.75 equiv of cryptand 2 was further added to the Hg₆1₄ solution to trap exactly half of Hg²⁺ ions in solution as an Hg²⁺-cryptate (Hg²⁺ \subset 2) inclusion complex, the Hg₆1₈ capsule was simultaneously and quantitatively regenerated (Figure 2d). Each conversion step was brought to completion within a few minutes.

Such a structural interconversion system could trigger a remarkable change in chemical and physical properties between the two states. This system actually allowed fluorescence switching in conjunction with the structural interconversion.⁹ Upon excitation at 284 nm, the Hg₆1₈ capsule showed violet-light emission at 360 nm in CH₃CN at 293 K. In contrast, the Hg₆1₄ cage exhibited almost no emission (Figure 3a,b).¹⁰ In a cycle, when 0.75 equiv of Hg²⁺ ions and [2.2.2]-cryptand were added in this order to the initial solution of Hg₆1₈ capsule, the violet-fluorescence disappeared and again appeared in association with the interconversion between the two Hg²⁺ complexes. This ON/OFF switching process could be repeated at least ten times without any loss of fluorescent efficiency (Figure 3c).

In conclusion, we demonstrated the quantitative self-assembly of the positively charged Hg_61_4 cage complex and its reversible interconversion with the structurally distinct, neutral Hg_61_8 capsule complex in response to $Hg^{2+}/1$ ratios. These dynamic structural changes were found to associate with fluorescence switching between the fluorescent capsule and the nonfluorescent cage. The present molecular system design would allow structurally as well as electrostatically controlled molecular capturing in association with an external stimulus-triggered response.

Acknowledgment. This study was supported by a Grant-in-Aid for The 21st Century COE Program for Frontiers in Fundamental Chemistry, a Grant-in-Aid for Scientific Research (S) to M.S. (Grant No. 16105001), a Grant-in-Aid for Young Scientists (A) to S.H. (Grant No. 17685005) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and Kurata Foundation.

Supporting Information Available: Experimental procedures and spectral data of Hg_6I_4 complex. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F. Angew. Chem., Int. Ed. 2000, 39, 3348–3391.
- (2) (a) Balboiu, M.; Lehn, J.-M. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 5201–5206. (b) Marquis, A.; Kintzinger, J.-P.; Graff, R.; Baxter, P. N. W.; Lehn, J.-M. Angew. Chem., Int. Ed. 2002, 41, 2760–2764. (c) Balboiu, M.; Prodi, L.; Montalti, M.; Zaccheroni, N.; Kyritsakas, N.; Lehn, J.-M. Chem. Soc. 2000, 122, 7150–7151. (e) Jiménez-Molero, M. C.; Dietrich-Buchecker, C.; Sauvage, J.-P. Chem. Commun. 2003, 1613–1616. (f) Yamamoto, T.; Arif, A. M.; Stang, P. J. J. Am. Chem. Soc. 2003, 125, 12309–12317. (g) Sun, S.-S.; Stern, C. L.; Nguyen, S.-B. T.; Hupp, J. T. J. Am. Chem. Soc. 2004, 126, 6314–6326. (h) Albrecht, M.; Janser, I.; Runsink, J.; Raabe, G.; Weis, P.; Fröhlich, R. Angew. Chem., Int. Ed. 2004, 43, 6662–6666. (i) Brown, A. M.; Ovchinnikov, M. V.; Stern, C. L.; Mirkin, C. A. J. Am. Chem. Soc. 2004, 126, 14316–14317.
- (3) (a) Hiraoka, S.; Yi, T.; Shiro, M.; Shionoya, M. J. Am. Chem. Soc. 2002, 124, 14510–14511. (b) Hiraoka, S.; Harano, K.; Shiro, M.; Shionoya, M. Angew. Chem., Int. Ed. 2005, 44, 2727–2731.
- (4) Hiraoka, S.; Harano, K.; Shiro, M.; Ozawa, Y.; Yasuda, N.; Toriumi, K.; Shionoya, M. Angew. Chem., Int. Ed. 2006, 45, 6488–6491.
- (5) The amount of Hg_61_4 increased linearly with an increase in the $Hg^{2+}/1$ ratio. For example, when the ratio reached 9:8, the integral ratio of Hg_61_8 and Hg_61_4 became approximately 1:1 in the ¹H NMR spectrum.
- (6) See Supporting Information.
- (7) Morris, K. F.; Johnson, C. S., Jr. J. Am. Chem. Soc. 1992, 114, 3141– 3142.
- (8) ¹⁹F DOSY measurement of the Hg₆1₄·(OTf)₁₂ cage complex showed that the diffusion coefficient of the TfO⁻ anions is 9.1×10^{-10} m² s⁻¹, which is much larger than that of the cationic part of the cage complex. This result suggests that the TfO⁻ anions do not bind to the Hg²⁺ centers in Hg₆1₄.
- (9) Fluorescence of ligand 1 and its metal complexes arises from 4-(3-pyridyl)phenyl moieties. See: Sarkar, A.; Chakravorti, S. J. J. Lumin. 1995, 65, 163–168.
- (10) The difference in the fluorescence properties of the two Hg²⁺ complexes is probably due to that in the extent of the heavy atom effect of Hg²⁺ associated with the changes in their coordination geometry and to that in the structural flexibilities of the ligands. See Supporting Information.

JA0659727